Learning causal network structure from multiple (in)dependence models
نویسندگان
چکیده
We tackle the problem of how to use information from multiple (in)dependence models, representing results from different experiments, including background knowledge, in causal discovery. We introduce the framework of a causal system in an external context to derive a connection between strict conditional independencies and causal relations between variables. Constraint-based causal discovery is shown to be decomposable into a candidate pair identification and a subsequent elimination step that can be applied separately from different models. The result is the first principled, provably sound method that is able to infer valid causal relations from different experiments in the large sample limit. We present a possible implementation that shows what results can be achieved and how it might be extended to other application areas.
منابع مشابه
Quantitative Structure-Activity Relationship Study on Thiosemicarbazone Derivatives as Antitubercular agents Using Artificial Neural Network and Multiple Linear Regression
Background and purpose: Nonlinear analysis methods for quantitative structure–activity relationship (QSAR) studies better describe molecular behaviors, than linear analysis. Artificial neural networks are mathematical models and algorithms which imitate the information process and learning of human brain. Some S-alkyl derivatives of thiosemicarbazone are shown to be beneficial in prevention and...
متن کاملLearning Bayesian Network Structure using Markov Blanket in K2 Algorithm
A Bayesian network is a graphical model that represents a set of random variables and their causal relationship via a Directed Acyclic Graph (DAG). There are basically two methods used for learning Bayesian network: parameter-learning and structure-learning. One of the most effective structure-learning methods is K2 algorithm. Because the performance of the K2 algorithm depends on node...
متن کاملAn Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملMalmquist Productivity Index with Dynamic Network Structure
Data envelopment analysis (DEA) measures the relative efficiency of decision making units (DMUs) with multiple inputs and multiple outputs. DEA-based Malmquist productivity index measures the productivity change over time. We propose a dynamic DEA model involving network structure in each period within the framework a DEA. We have previously published the network DEA (NDEA) and the dynamic DEA ...
متن کاملGeneralization of Dynamic Two Stage Models in DEA: An Application in Saderat Bank
Dynamic network data envelopment analysis (DNDEA) has attracted a lot of attention in recent years. On one hand the available models in DNDEA evaluating the performance of a DMU with interrelated processes during specified multiple periods but on the other hand they can only measure the efficiency of dynamic network structure when a supply chain structure present. For example, in the banking in...
متن کامل